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CONTROLLER DESIGN FOR NONLINEAR AND TIME VARYING PLANTS
Richard V. Monopoli*

SUMMARY y fg‘?d;C)

A technique for controller design previously reported2’h, is generalized
herein to include a wide class of plant nonlinearities, The technique, based
on Liapunov's Second Method, generates a control signal which forces the plant
states to be close to the states of a model reference. In addition to the
generalization, the technique is extended to include convergence time, i.e.
time of response to initial perturbations of the equilibrium, as part of the
design rroblem, Also, modifications to the original technique are mad ic
make it more attractive from an engineering point of view, é% J

INTRODUCTION

Much of the literature dealing with Liapunov's Second Method concerns it-
self with analysis of stability problems. Notable exceptions, in which_the
method is applied to engineering design problems, include works by Bassl,

Grayson?s3, Monopoli%, Johnson’, and Nahib.

In this report, a method is presented for design of controllers employing
a model reference which generalizes the techniocue due to Grayson, The generali-
zation is to a much broader class of nonlinear plants than previously reported’,
In addition to the generalization, the technique is extended to include conver-
gence time, i,e, time of response to initial perturbations of the equilibrium,
as part of the design problem, Also, certain modifications of Grayson's tech-
niques are made which result in a reduced control signal level and avoid the
need for using derivatives of the input signal in generating the control signal.

The technique is applied to plants which include square law damping, static
friction, ‘coulomb friction, and hard and soft spring type nonlinearities, Re-
sults of digital computer simulations for these plants are presented. These do
not exhaust the possibilities, but serve only to demonstrate the method., In
fact, the technique is applicable to a wide variety of nonlinear plants provided
the form of the nonlinearity is known., In general, the control law requires
that the form of the nonlinear function of the plant states be generated, How-
ever, if an upper bound on the magnitude of the argument of the nonlinear func-
tion is known, this requirement can be relaxed and the exact form of nonlin-
earity can be replaced by the magnitude of its argument, These points are
clarified through the several examples presented.,

*Electrical Engineering Department, University of Connecticut, Storrs,
Connecticut




The question of convergence time, i.e. the time required for the plant
states to become equal to the model states, has not been treated previously
in a design context, In the event that the plant is tracking the model, the
control action is such that plant and model outputs differ only slightly and
the difference is reduced to zero quite rapidly. A detailed examination of
convergence time is not essential in this situation. However, when a system
is started with plant states greatly different from model states, it is im-
portant to know how design parameters can be selected to reduce this initial
error to zero in a specified time, A closely related vroblem receiving
attention in the recent literature’;0 is that of the time-optimal and quasi
time-optimal control problem,

In general, it is not an easy matter to choose parameters so that con-
vergence time is minimized. In this report, the problem is presented of the
design of an nth order plant such that convergence time is minimized. The
analytical difficulties for plants higher than second order are so great
that it was decided a more fruitful approach would be to arrive at results
by intuition gained from the solution of the second order problem. The
validity of these results for a third order plant was then checked using an
analogue computer simulation., The computational part of this work was
carried out in the Computer Center of the University of Connecticut which is
supported in part by Grant No, GP-1819 of the National Science Foundation.
The author is indebted to Mr. Donald Jorgenson for programming the IBM 7040
computer to solve the examples presented,

SYNTHESIS TECHNIQUE

The controller synthesis technique presented herein applies to single
output plants (Fig. 1) which can be described by a set of n first order
differential equations of the form

X=X 41 i=1,2 ... n-1 (1a)

)cn f<X1’ x2’ oooo)cn, u, u’ ..um, r, I‘, ...rm, t) (lb)

or equivalently

[ Y

=f(x,u,r,t) (1c)

where r is the command input, u the control signal, and the x;'s the state
variables,

The presence of derivatives of r and u in the function f allows for the
possibility of plant zeroes,




r + m X

4. )[k PLANT

+
u
Controller
--—-—-9# and e s
Model Derivative
Circuits

Fig. 1 - General System Configuration

With certain restrictions on the form of f which will be considered
later, form (1) is necessary and sufficient for deriving a control law from
a Liapunov function of quadratic form. This control law prescribes what
control signal u is required to cause the behavior of the plant to be like
that of a model reference with behavior governed by the linear constant co-
efficient vector differential equation

L]

Xq = Ao Xq *+ Bor (2)

where x4 is an n vector with model state variables as elements, B, is an

nxn constant matrix, and A, is a stable nxn constant matrix of the canonical
form

0 1 0 O . 0
0 O 1 O .
A, = 0O 0 0 1 (2a)
301 352 353 ¢ °*  Zon
L -

The form of (1) or (2a) implies either that the set of state variables
chosen is comprised of the output signal and its first n-1 derivatives, or
that an appropriate transformation from a different set of variables was
used, It is interesting to note that the existence of such a transformation
is a necessasy and sufficient condition for a linear autonomous plant to be
controllable ’8,

v



In order to use the second method of Liapunov in controller design, it
is necessary to have a differential equation with a well defined equilibrium,
since the second method concerns itself with the stability of the equilibrium
voints of differential equations. In this design, it is through use of the
model reference that an equation with a suitable equilibrium can be derived,
This is done by defining an error vector

e=x4-X (3)

The function of the controller is to cause e to approach zero. Since

e = Xq - x, then (1c) can be subtracted from (2) to give a vector differen-
tial equalion in the error variable '
§=hoe * Agx - £ (x, 1, x, t) * Ber (4)

It is to this ecguation that the second method is applied. The control effort
is directed toward maintaining the eauilibrium of (4), e = o, asymptotically
stable in the whole,

A function of the error states of quadratic form provides a convenient
starting point for design. Let this function be

V(e) =e" Pe (5)
where P is a matrix to be determined., The time derivative of (5) is
V(_G_) = ET (AEP + P Ao) e+ 2ETP [AOE -f (E:E,E:t) + Bo.?.] (6)

The equilibrium, e = O, can be made asymptotically stable (and consequently
(5) will be a Liapunov function for (4) ) if

1. The solution of the equation AgP + P Ay = =Q (where Q is
positive definite) yields a positive definite P,

2., u can be chosen to make the second term on the right hand
side of (6) non-positive,

The first condition will be met as a consequence of choosing A, to be

a stable matrix. The second condition can be met provided the function f
meets certain reouirements, and its form and bounds are known.

Restrictions on the Function f
In the special case of a linear time-varying plant, the function f re-
duces to a linear combination of the nlant states plus terms involving the

elements of u and r. For example

f=alx+pMu+clr




where a, b, and ¢ are n vectors with time-varying elements

[ (t]] [ b, (t)] (e, (1)

axt) by(t) e(t)
a= |- b= |- e= |-

a (t) b (t) c (t)

When f is of this form, the only condition it must satisfy is that the
coefficient of the highest derivative of u be of one sign and non vanishing.

Example 1, - To illustrate the condition just described, consider the
plant shown in Fig., 2. The equation describing this plant is
.0 [ ] [
x + ax + Kox = Kox + KTu + Ku %))
PLANT
Controller K(Ts + 1)
r u S X
—)  and —3
Model ke | s(s + a)
J,

Fig. 2 = Second Order Plant With Zero

The desired behavior is given by the model equation

Xy *+ agXy * Koxy= Kor " (8)
The error equation resulting from subtracting (7) from (8) is

e +ae+ K= Ko(r-x) - KTu -~ Ku +ef x (9)




where .74

=a-ao
_ T
for V(e) =e Pe,
. . . K
V== qe2+qe2 - KT y u+}u_°—(-x-—°-(r~x) (10)
1171 22°2 T KT KT

where qy7 and q,, are elements of a positive definite diagonal Q matrix,
¥ = pyzey + po2en, and pyp and Py, are elements of the P matrix,.

If KT>»0, i.e. if f satisfies the necessary condition for this linear

time-varying plant, then a stabilizing control signal can be generated by
choosing

{'l || l ',WH |KT| r"“}“"lg” (11)

The control signal u is generated as shown in the block diagram of
Fig., 3. The saturation function is used rather than the sign function for
reasons discussed in Ref, L.

satby

—
[l

KT max

Pip®* Py e

K
I;L. l(r—x)
KT nax

(9
it

Fig. 3. - Instrumentation For Generating The Control Signal

A 4



Note that K x has been added to both sides of (7). This is in contmast
to the procedure described in Ref, 2 where use is made of unity linear feed-
back to obtain a term in x on the left hand side of the equation, In plants
which ocontain at least one integrator, there is no need for the physiecal
presence of this feedback, since the mathematical formulation given by (7)
leads to a satisfactory control law for generating u., Leaving out the unity
linear feedback path simplifies computation of the bounds of the coefficients

of (7).

Another departure from previously reported procedure is that the reference
input r is not fed directly into the plant, A plant with a zero was de-
liberately chosen to illustrate the advantage of this modification. If r
were a direct input to the plant, then one of the terms in (11) would be r.
For an r characterized by step changes, this leads to the undesirable situa-
tion of requiring impulses in the generation of 4.

Previously, it has not been pointed out in the literature that maximum
values of the coefficients of the variables in (11) should be chosen keeping
in mind that if numerator, N(t), and denominator, D(t), time variations are
simultaneously known, a reduction in coefficient magnitude may be achieved by
using IN(t)/D(t)lmax, not |N(t)|max/|D(t)| min®

This oversight in Ref, 2 led to use of a coefficient larger than necessary by
a factor of three, and thereby to an excessive control signal level,

The condition imposed on the function f in the case of nonlinear plants
depends on its argument. If f is not a function of u or any of its deriva-
tives, then the necessary condition for f to satisfy is exactly that just
discussed for a linear time varying plant.

Example 2. - Consider the second order plant in Fig, 4a with square law
damping. The equation for such a plant is

e .2
X + ax + Kbx = Ku + Kbr (12)

utbr 4 1 x [ X
wa = Pl = >
- N ‘
honlinearity
}
{a) Plant {b) Nonlinearity

Fig. 4 - Second Order Plant With Square Law Damping
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The model and Liapunov function used in Example 1 are used here and
in all further examples, ¥ in this cage is

Kb-K a x .2
. 2 2 o 0 ax
ve=- [qn°1 +q1232] R I (rx) + % - X (13)
For b = 1, the control law required to keep v negative is
K-K . a .2
u = % lmax (rex)] < —maxlxl + |—|max X signy (14)
In (13) x2 can be 1nstrumented with a multiplier, However, if an
upper bound, |x| R on|x|can be determined, the multiplier is unnecessary

and a simple gain for|x|w1ll suffices This is illustrated in Fig. 4b.

Since la/Kl . ;l Ia/KI . X2 for | i|<:|i| (15)
then the termla/Kl . %2 in (14) can be replaced by |a/K|
if operation is restricted to the range where |x|<:|x|

X

(E

Since the nonlinearity of this example is not a functlon of u, the only
condition which f mmust satisfy is that K > O. This is evident from (13)
and (14).

Example 3. - Plants which exhibit either static friction or coulomb
friction can be controlled using this technique (Fig. 5).

- l— |
c
—] =F -F

(a) Plant (v) Coulomb Friction (e¢) Static Friction

jNonlinearity

Fig. 5 - Second Order Plant With Static or Coulomb Friction
The equation describing the behavior of these plants is

X + ax + £(x) = Ku (16)



Application of the design equations yields

K
us‘—g +d ‘}.{
max

=X +

%‘ FV signy (17)

K K

The control signal given by (17) is adequate for either the static
friction or the coulomb friction case. However, in the case of static
friction, the constant term involving F is not necessary for |X|:>|ic|.
This fact can be used to advantage to reduce the magnitude of u by
including a relay in the design which removes the constant signal from
u when | x| > {x,]| -

Example 4. - Another example illustrating the design technique for
nonlinear plants is the plant of Fig., 6 for which the equation is

oo . t
x+ax+bx+cx3=Ku+K5udt (18)
[o]

u NE + | x 1 x
-——-——€+ K(1 + =) ? + - S - >

b+ ¢ x? *](

Fig. 6 - Second Order Plant With Hard and Soft Spring Type Nonlinearity

In (18), ¢ D0, ¢ = 0, and ¢ £ 0, corresponds to a hard spring, linear
spring, and soft spring respectively. The design procedure is straight-
forward and leads to the control signal
t
' Ix x3‘ +lj udt,
o

‘ K
0
u = =
max

. +

= X
K
max

b c ,
K (r—x) K Ml B signy

(19

®
max




AWhere°<=a—ao.

The modified forcing function on the right hand side of (18) in
Example 4 is necessary because the plant has no pure integrator. Consider r
to be a step input, R, to the model. In this case means must be found to
provide a steady state input to the plant. Since in normal operation of
the controller, u=»0 as e =p 0, the control signal itself cannot perform
this function. However, the integral of this signal, appearing on the
right hand side of (18), can. In the steady state, ¢ = 0, x = R and

Kfz udt = bR + cR-.

The last form of f which will be considered is one which is a function
of u. This case, which arises in a plant with a nonlinear gain in the
forward path, has been treated previously in Ref, 4., The condition recquired
of f is shown there to be

o0 > £u) 50

A nonlinear gain is a common form of plant nonlinearity., As shown in
Ref, 4, this type of nonlinearity is also handled by a straightforward
application of this technique, and the resulting controllers are easily
implemented.

Computer Simulation of Several Examples

Several cases each of Examples 2, 3, and 4 were simulated on the
IBM 7040 digital computer. The results of these simulations are shown in
Figures 7 through 13. The model used in all cases is that given by (8)
with ag = K, = 2, The input to the system, r(t), is taken as a unit step
function in some cases and as a sine or cosine of unit amplitude and
frequency @W= 0.1 in others, The percentage error is indicated at several
points on each of the error curves, This percentage is({xg - x)/x4)+(100).
The conditions which pertain for each of the Figures 7 through 13 are
desoribed in Table I, In all cases, the control signal was generated using
sat 10(2e + 38). The error can be made smaller by using a b > 10, but
even for b = 10, it is quite small most of the time.

CONVERGENCE TIME

The control signal generated by the controller guarantees that plant
states approach the model states. To obtain an estimate of convergence
time a parameter N 1is defined as

nzmn[M],ng (21)

10




o(t) x 105, u (t)
TABLE I xi0%
1.88
Conditions for Figs. 7 - 13 ]
]
1.5
Fig. { Example Case Plant Equation Coefficients |Input, r(t) ir
-t H
7 2 1 (12) : -0 1 '| 1114
K=1 1.0 |
12,232
a=gint
8 2 2 (12) b= 1 n
K=1
0.5
,'.
a=gint \
9 2 3 (12) b=t sin 0,1 t \ /
K=t o 3 o
i\e /
"
.. (16)
10 3 1 £(x) of Fig. Sc ; - :1" teos ot } /
: A
Fel, %, = 0,1 0.5 ‘ T
.o (18)
1 3 2 £(x) of Fig. 5 ; : :in t sin 0,1 ¢t
Fel -1.0
Key for l(’i res 7 through 13
- Error, o(t e
) ; - :iﬂ ¢ C::Z:olaSignul, u(t) comewma
12 I 1 (18 e =1 1 s
K=
a=gsint .88 > (time 4o}
13 A 2 (18) Z : : cos 0.1 t 1.86%1 8 12 16 20
K=1 .
Fig. 7 - e(t) and u(t), Ex. 2, Case 1
e(t) x 102, 2 x u(t)
1.88
]
e
4
1.5
!
! 1.11% 2
1] e(t) x 10%, 20 x u(t)
1.0 | N A
H 0.75
!
i 0.5
[ Ll
0.5 H i 14.7% U
s 4,768 .
228 \ s
| 0 ‘_ ,’
° % I.H —— { /’
i. / / ‘| /".
L\/ 2.8% Rl 7
o5 4\ { //
| ! 59% ! /
!\" -1.0 { i
7
o | 1\ J- (
! \ /
1 .
-1.5 .= -,/ N,
" > 3.03%
1.5 \ s
\ '/
\.\ z time
\} t1 20 0 4 8 12 16 2 P (seconds)
e
-2.04 ""-955 8 12 16 il ‘
Fig. 8 - e(t) and u(t), Ex. 2, Case 2 Fig. 9 - e(t) and u(t) , Ex. 2, Case 3
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e(t) x 102, 2 x u(t)

eo(t) x 102, u(t) 2.8 1 2008 2,629
A
| ] 1 {
2.0 f
I I \ / in \
i v A Hi A
1.0 R i i il il "
1\ 2 oo 11§ i || :‘ ‘l !!I
. ' - 1 3 i
o L1 ﬂ‘ = 1 i { ! \ "
! i | 3 ! ] ‘ { " ' i
L5u58 i ‘ © l ’ .| ‘ ! [
i - -~ ; A\=8.75 1 -’ 4 " ! A
0 R <f == 3 il i 1 !\ [ | |I\
s il i 11 i b 11
VIR E
iy J ‘ | ! ! .
1.6 i r l; ‘ ! ‘.r
j \i L \U
0 | A Y \y
\J ‘v : l
2.4 Y
1.99%
4.0 TR \J
time .
L : 12 I. 0 P(seconds) | 3 7 : — - > (socende)

Fig. 10 - e(t) and u(t), Ex. 3, Case .|Fig. 11 - e(t) and u(t), Ex. 3, Case 2.

o(t) x 107, u(t)/2

3

1.05
2
e(t) x 10°, u(t)/2
A
c.9 1.2
I\
0.75 0.8
! 0.65%
b
0.6 tv C.d F \
RS
\‘«' \,
~.
0.45) 0 ~ —
\\ ——tm b SR TN
0.3 ~0.4 —
o.1 -0.8 - e /\A
\ time 2 ( “"“d )
° 12 16 2> (seconda) | ~1+2 4 Iy : 2 18 =

Fig. 12 - e(t) and u(t), Ex. 4, Case 1.|Fig. 13 - e(t) and u(t), Ex. 4, Case 2.
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From (21)
V(e,t) € M V(e) (22)

This last equation can be solved to yield

7 (t-t)

V(e) € V(eode (23)

where
V(e,) = V(e, to) (24)

It is seen from (23) that the design should be directed toward
maximizing the value of ; if convergence time is to be minimized,

Since V depends on u, a nonlinear, non algebraic function, the
actual value of ,® is difficult to compute, This difficulty is avoided
by defining the two additional quantities,
Vole) 2 - T Q e 2V(e,t) (25)

and

a -V (e)

Since 7} ., is the ratio of two algebraic functions of e, ey ....
en , the probiem of maximizing it is easier to handle than that of
maximizing 7 .

If (26) is written as

% = -Sl(AGP +PAJe ol Qe

Qo
e'P e el Pe

(27)

then it is clear that the convergence time depends explicitly on the
P matrix of the Liapunov function and the A  matrix of the model,
Since the design procedure involves arbitrarily choosing a positive
definite matrix Q, then P is determined once the choices for Q and A,
are made, The design problem then is to choose Q and A, so as to
minimize convergence time,

A conservative estimate of convergence time can be obtained by use
of the fact that a positive definite quadratic form is bounded above and
below by the inequality

TA® [|e||® 4PN B gF (@)

13




where )\i (P) are the eigenvalues of P for i = 1, 2, ....n. These
eigenvalues are positive since P is a positive definite matrix. |Ig||2
symbolizes the square of the Euclidian norm of e. Use of (28) allows the
simple estimate for 7y ,

"RAL (@

> D max

Although (29) allows a simple estimate for 77 once Q and A, are chosen,
it does not give an explicit relation from which design parameters can
be chosen to yield a specified value of 22 . In addition, the estimate
afforded by (29) is too conservative to have much meaning in the physical

problem, To acquire further insight into the nature of the parameter 77 ,
consideration is directed toward the second order problem.

Relation of Convergence Time to Design Parameters for the Second Order Case

To determine how 72, is affected by the design parameters in the
second order case, it is written in terms of these parameters as

2 2
N = — % + G (30)
(] . *
Pi1e? + 2pypeé + ppoé?

where a diagonal Q matrix has been assumed.

Solving A:P + PA, = - Q for P yields

P - Ko a1 4 8,911 (31a)

= —_— +
-7y \K 22 Ko

q

1 (31b)
la = X
R T (31c)

22 K20 2a,

where the A, for the model given by (8) has been used.

14



These expressions for the P matrix elements are substituted into
" (30) to give

e
)Z° i +,8K + ao e +
2a.o

%o
A= &

.2
te (32)

ee H1 +8K, &2
2aoKeo

where

2
The parameter /3 indicates the relative weighting of e and 32 in
Vo(e)

To find the minimum value of 77 ,its derivatives with respect to
e and & are taken in (32) and set equal to zero. In both cases the
equation to be satisfied is

o2 +[l _ (B o) ﬂao] eé - ,eé2=o (33)

a¢p O

The solution of (33) yields

e = k1 e (314»)

where

2 2
k1=- .2_ —-%O—_Fao tz ——?o—o—_ﬂao] +hp

If (34) is used in (32) the result is

(kf +8)(22a, K,)

R, - (35)
o (/8K02+ Ko+a02) k%+2ao kq +1+,8Ko

All of the parameters to be chosen in design, i.e. a, K
and /6 , are brought out explicitly in (35).

(o] 2

Since 72, is a function of the three parameters a, , K, , and ’
it is not in general an easy task to maximize its minimum value by _
choice of these parameters, A significant simplification of (34) and
(35) occurs if/e is chosen such that

S Ko << 1 (36)

15



This leads to

1
~N o ~
ky R 2y (37a) and KR+ B a, (370)
The value for k; given by (37b) gives the minimum value for2g ,
which is 5
(1 +,68‘o ) 23.0/3 K, (38)
n, -

2\2 Z
(1 +Ba, )+ B K, + @ a2 Ko (1 +/9Ko)
For the second order system given by (8)

a, = 2 $.fK; (39)

where j is the damping ratio and ﬂlxo the undamped natural
frequency of the model,

Use of (39) and (38) leads to

2
k) LT, o
© G rufPB ) 8K, ¢ uFB8 % (1B K)
From (40) it is seen that for a fixed damping ratio , the

convergence time can be made as small as desired by increasing K,
while keeping‘/s K, constant at a value which satisfies (36).

Consider the significance of the condition (36) if the model para-
meters are fixed. For K > 1, 8<<1, This means that the error is
weighed much more heavily in the V function than its derivative. This
weighting can be interpreted in terms of the switching line defined
by the switching function of (11)., The equation for this line is

c-_P2 g--_2 _ (11)
P22 1 +f3 Ko

In (41), 1f @ K<< 1, then

éz—aoe (42)

and the slope of this switching line has its maximum possible magni-
tude. Thus, the effect of the weighting of states in the Q matrix has
been to rotate the switching line toward the & axis in the e-& plane.

The effect of this rotation in decreasing convergence time is illustrated
in Fig. 1.
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Fig. 14 - Relation of Switching Line Slope to Convergence Time

Higher Order Systems

An analysis similar to that above for the second order problem would
be extremely difficult to carry out for even a third order system, Rather
than using an exact analysis, the results of the second order case were
applied to an analogue computer simulation of a third order plant. The
transient response for the error variable was compared for two different
Q matrices. The plant used is described by the equation

0 1 0 0 0 0 u
x=1o0 0 1 x+ |0 0 0 a (43)
2 .
0 -~Ww, -2}0, ok O
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and the model by

0 1 0"1 0 0 0 r
-;iq=.001xd+ooo r (44)
-1.2 "2.]5-103-‘ L102 O 0 r
The plant described by (43) represents the pitch agis stability
augmentation system of the X-15 manned re-entry vehicle’.
To carry over the results of the second order case, the control
law was derived first with a Q matrix equal to the identity matrix
(the one usually chosen for convenience in the literature), and then
with a Q matrix in which the error variable was weighed more heavily
than its derivatives,
These matrices are
1 0 0 ri 0 0]
Q=10 1t 0} Q= JO0 0.1 O (45)
) ) 1 0 0 o.01
L d
The switching function part of the control law resulting from
each of these is
¥1 = O.415e + 1,238 + 1.338 (46a)
and
Y2 = 0.415e + 0.486é + 0.377¢ (46b)

where y; corresponds to Qi and Y2 to QZ‘

The system was started with initial conditions e = 5, e ="¢ =0,
The transient response for both cases is shown in Fig, 15. It is seen
that the one for Qu is considerably faster than that for Qi.
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Fig. 15 - Transient Response For Third Order System

CONCLUSIONS

Controllers can be designed for a wide class of nonlinear plants
using the technique presented in this report. The technique is
applicable to plants for which the form of the nonlinearity is known.
Digital computer results presented for plants with square law damping,
static friction, .coulomb friction, and hard and soft spring type
nonlinearities show that the control effects close agreement between
the plant and model reference outputs.

An exact expression for convergence time in terms of design
parameters is derived for the second order case. Derivation of an
equivalent expression for higher order systems is quite complex,
However, the solution of the second order problem does lead to insight
which is useful in designing higher order systems.
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